
Why architects should care about
DevOps
Len Bass

© Len Bass 2022 2

What is DevOps?

• “[DevOps] aims to shorten the systems
development life cycle and
provide continuous deployment with
high software quality”

• DevOps is a process improvement effort.
This means there must be measurements
• deployment time and frequency
• production tickets and time to repair

© Len Bass 2022 3

DevOps differs from prior
process improvement efforts

© Len Bass 2022

Dev

Deploy

Operate

Build

Release

Monitor &
Analyze

Test

Design

Release

Test

Build

Dev

Deploy

Operate

Monitor &
Analyze

Design

Create an executable
artifact

Approve for deployment

Ensure high test
coverage &
automate tests as
much as possible

Design architecture to
support other activities

Perform normal
development activities
Create scripts for
other activities

Move into production
environment

Execute system and
gather measurements
about its operation

Display measurements
taken during operation
& analyze the data

DevOps Processes

© Len Bass 2022

Dev

Deploy

Operate

Build

Release

Monitor &
Analyze

Test

Design

Release

Test

Build

Dev

Deploy

Operate

Monitor &
Analyze

Design

Create an executable
artifact

Approve for deployment

Ensure high test
coverage &
automate tests as
much as possible

Design architecture to
support other activities

Perform normal
development activities
Create scripts for
other activities

Move into production
environment

Execute system and
gather measurements
about its operation

Display measurements
taken during operation
& analyze the data

Managing Credentials

© Len Bass 2022 6

Credential Sprawl
• Allowing applications to manage their own credentials

leads to credential sprawl.
• Difficult to determine where credentials exist
• Difficult to prevent leakage of credentials
• Difficult to determine audit trail
• Difficult to rotate credentials

© Len Bass 2022 7

Vault
• Vault is a centralized credential management system
• It manages

• Credentials for access to resources
• Audit trail of access
• Credential rotation

© Len Bass 2022 8

Use of Vault
• Applications must be designed to use Vault for

storing and retrieving credentials.
• Resource managers are registered with Vault.
• Vault Is integrated with OAuth to allow an application

or user access to a resource

© Len Bass 2022

Dev

Deploy

Operate

Build

Release

Monitor &
Analyze

Test

Design

Release

Test

Build

Dev

Deploy

Operate

Monitor &
Analyze

Design

Create an executable
artifact

Approve for deployment

Ensure high test
coverage &
automate tests as
much as possible

Design architecture to
support other activities

Perform normal
development activities
Create scripts for
other activities

Move into production
environment

Execute system and
gather measurements
about its operation

Display measurements
taken during operation
& analyze the data

Managing Scripts

© Len Bass 2022 10

What is IaC?

• Infrastructure as Code (IaC) is the management
of infrastructure (networks, virtual machines,
load balancers, and connection topology) using
code segments in various languages. E.g.
• Command line scripting
• Provisioning specifications, e.g. Vagrant, Terraform,

Cloud Formation, Chef, Puppet, Ansible
• Specification files for various tools, e.g Dockerfile

• Every repetitive action should be automated.

© Len Bass 2022 11

Management of IaC

• IaC is managed in the same fashion as code
• Version controlled
• Shared among teams
• Tested

© Len Bass 2022 12

IaC languages

• IaC languages are typically declarative
although they may have some imperative
portions.

© Len Bass 2022 13

Deployment Architecture

• Includes VMs, network connections, security
settings,

• Must be constructed correctly
• Must be able to be reconstructed
• Specifying deployment architecture as IaC

supports these requirements

© Len Bass 2022 14

Cloud providers provide
templates

• The constrction of an IaC program is
simplified by the availability of templates
provided by cloud providers.

© Len Bass 2022 15

Sample Cloud Formation
template (with no access control)

"AWSTemplateFormatVersion" : "2010-09-09",
"Description" : "A sample template", "Resources" : {
"MyEC2Instance" : { "Type" : "AWS::EC2::Instance",
"Properties" : { "ImageId" : "ami-2f726546",
"InstanceType" : "t1.micro", "KeyName" : "testkey",
"BlockDeviceMappings" : [{ "DeviceName" :
"/dev/sdm", "Ebs" : { "VolumeType" : "io1", "Iops" :
"200", "DeleteOnTermination" : "false", "VolumeSize" :
"20" } }] } } } }

© Len Bass 2022 16

Vulnerabilities

• However, inappropriate access control is a
source of many production vulnerabilities.

• One study by Palo Alto Networks found over
200,000 vulnerabilities in CloudFormation
specifications due to inadequate access controls.

• Another study cited by Accurics found that 93%
of specifications had misconfigured cloud
storage access controls.

© Len Bass 2022

Dev

Deploy

Operate

Build

Release

Monitor &
Analyze

Test

Design

Release

Test

Build

Dev

Deploy

Operate

Monitor &
Analyze

Design

Create an executable
artifact

Approve for deployment

Ensure high test
coverage &
automate tests as
much as possible

Design architecture to
support other activities

Perform normal
development activities
Create scripts for
other activities

Move into production
environment

Execute system and
gather measurements
about its operation

Display measurements
taken during operation
& analyze the data

Deployment

© Len Bass 2022 18

What is continuous
delivery/deployment?

• “With continuous delivery, every code change
is built, tested, and then pushed to a non-
production testing or staging environment.

• The difference between continuous delivery
and continuous deployment is the presence
of a manual approval to update to production.
With continuous deployment, production
happens automatically without explicit
approval.” (Amazon)

© Len Bass 2022 19

Continuous deployment

• When a team completes revisions on their
service
• They commit it to a version control system
• This triggers the deployment pipeline
• If no errors are discovered, it goes directly

into production
• No interruption of service.

© Len Bass 2022 20

Any team can deploy at any
time

• In traditional release cycles, teams coordinate
so that modifications to services are placed
into production simultaneously.

• With continuous deployment the situation is
different
• Any team can deploy at any time
• There is no coordination among teams with

respect to sequencing of service
deployments.

© Len Bass 2022 21

Deploying a new version of an
application

Multiple instances of a
service are executing
• Red is service being

replaced with new
version

• Blue are clients
• Green are dependent

services

Staging/container
repository

VAVBVB VB

© Len Bass 2022 22

Deployment goal and
constraints

• Goal of a deployment is to move from current state (N instances of
version A of a service) to a new state (N instances of version B of
that service)

• Constraints:
• Any development team can deploy their service at any time. I.e.

New version of a service can be deployed either before or after
a new version of a client. (no synchronization among
development teams)

• It takes time to replace one instance of version A with an
instance of version B (order of minutes for VMs)

• Service to clients must be maintained while the new version is
being deployed.

© Len Bass 2022 23

Deployment strategies
• Two basic all of nothing strategies

• Red/Black (also called Blue/Green) – leave N
instances with version A as they are, allocate and
provision N instances with version B and then switch
to version B and release instances with version A.

• Rolling Upgrade – allocate one instance, provision it
with version B, release one version A instance.
Repeat N times.

• Partial strategies are canary testing and A/B testing.

© Len Bass 2022 24

Trade offs – Red/Black and
Rolling Upgrade

• Red/Black
• Only one version available to

the client at any particular time.
• Requires 2N instances

(additional costs)
• Rolling Upgrade

• Multiple versions are available
for service at the same time

• Requires N+1 instances.
• Rolling upgrade is widely used.

Update Auto Scaling
Group

Sort Instances

Remove & Deregister
Old Instance from ELB

Confirm Upgrade Spec

Terminate Old
Instance

Wait for ASG to Start
New Instance

Register New Instance
with ELB

Rolling
Upgrade
in EC2

© Len Bass 2022 25

Version skew

• Teams can deploy new version of a service without
coordinating with other teams. Other teams are
managing clients and dependent services.

• This leads to possible inconsistencies among
versions
• Client may have been updated to new version

whereas server has not
• Vice versa

• We call this type of version skew “temporal
inconsistency”

© Len Bass 2022 26

Version skew example

• Suppose service A calculates the price of an
item on a shopping cart – including discount.

• The organization is changing the model for
discounting.
• Previously discount was per item
• Now the discount is based on total

purchases.

© Len Bass 2022 27

Version skew example
• Blue service

enumerates items in the
shopping cart by
invoking services.

• New discount model
requires Blue service to
calculate discount.

• If Red service has been
updated and blue has
not, no discounts are
calculated.

• Vice versa yields two
discounts.

VAB

© Len Bass 2022 28

Interface mismatch

• Another type of version skew occurs if an
interface is modified.

• In this case, the recipient should maintain
backward or forward compatibility.

• Backward compatibility means calling an old
interface still works correctly.

• Forward compatibility means the recipient
recognizes incorrect interface and responds
appropriately.

© Len Bass 2022 29

Managing version skew

• Version interfaces.
• Any modification to a service should result in

a new version number for its interface.
• Tag messages with version number of

expected interface
• It becomes the responsibility of the invoked

service to manage messages expecting
different versions

© Len Bass 2022 30

Protocol Buffers

• A protocol buffer specification is used to
specify an interface. Kept in a .proto file

• Language specific compilers used for each
side of an interface

• Allows different languages to communicate
across a message based interface

• Collection of .proto files defines all of the
interfaces and hence all of the services.

© Len Bass 2022 31

Protocol Buffers/Version Skew

• Protocol buffer specification is kept in a
version control system. I.e, It has a version
number.

• The compiler can include tagging the
message with the version number of the
.proto file in the generated code.

• If you use protocol buffers, you can manage
version skew by modifying recipient service.

© Len Bass 2022

Dev

Deploy

Operate

Build

Release

Monitor &
Analyze

Test

Design

Release

Test

Build

Dev

Deploy

Operate

Monitor &
Analyze

Design

Create an executable
artifact

Approve for deployment

Ensure high test
coverage &
automate tests as
much as possible

Design architecture to
support other activities

Perform normal
development activities
Create scripts for
other activities

Move into production
environment

Execute system and
gather measurements
about its operation

Display measurements
taken during operation
& analyze the data

Operation

© Len Bass 2022 33

Chaos Engineering

• Chaos Engineering is the discipline of
experimenting on a system in order to build
confidence in the system’s capability to
withstand turbulent conditions in production.

• Experiment and in production are key.
• Assumption is that testing large distributed

systems in the face of disruptions is not
possible.

© Len Bass 2022 34

Steps 1,2 for experiment

1. Define ‘steady state’ as some measurable
output of a system that indicates normal
behavior.

2. Hypothesize that this steady state will
continue in both a control group and a
experimental group.

© Len Bass 2022 35

Steps 3,4

3. Introduce variables that reflect real world
events like servers that crash, hard drives
that malfunction, network connections that
are severed, etc.

4. Try to disprove the hypothesis by looking for
a difference in steady state between the
control group and the experimental group.

© Len Bass 2022 36

Chaos Monkey

• Classic example is the Chaos Monkey –
Netflix and Google.

• It randomly kills servers in production.
• Effect should not be observable by end user.

© Len Bass 2022 37

Measurement

• After a system is in operation, measurement
information is gathered for three purposes:
• Alerting – Detecting that there is a problem
• Forensics – determining what caused a

problem
• Improvement – finding bottlenecks in

systems or determining causes of internet
traffic.

© Len Bass 2022 38

General picture

Running
system

Backend
Measurements

Measurements are taken from a running
system and its environment and sent to a
back end.
Splunk is common backend system.

© Len Bass 2022 39

Back end
• The back end has a data base (usually a time

series database). It
• Generates alerts
• Generates reports
• Allows drilling down into aggregate

information to get more detailed information
• Has a dashboard to give fast indication of

problems.

© Len Bass 2022 40

Alerts

• Back end has set of rules to establish when to
send an alert. E.g. alert if CPU utilization is
over 80% for 15 minutes.

• Utilization numbers are bursty. The period
must be sufficiently long to indicate problem.

• False positives and false negatives are both
problems.

• An alert causes a page to be sent.

© Len Bass 2022 41

Thresholds for Alerts

• SLA – Service Level Agreement. What is
guaranteed to clients (internal or external) for
each indcator

• SLO – Service Level Objective. A goal for the
team for each agreement. More restrictive
than SLA

• SLI – Service Level Indicator. Measurement
of the objective. For each indicator, define an
SLI and alert when it is violated.

© Len Bass 2022 42

Spans
• A trace captures the end to end actions in response

to a user request.
• A span is a named, timed operation that represents a

piece of the trace.
• Spans may have child spans
• Displaying spans on a time axis allows you to see:

• Parallelism
• Where time is being spent

© Len Bass 2022 43

Sample span display*

*https://sflanders.net/2019/03/28/an-intro-to-distributed-tracing/

© Len Bass 2022 44

How does tracing work? - 1

• This is one of many possible implementations.
• Request enters the system from external

source – user or external system
• Request is given a unique ID that reflects the

context
• Context description is kept in a data base so

that with context ID analyst can know details of
the context.

© Len Bass 2022 45

How does tracing work? – 2

• Context id becomes a portion of HTTP header.
World Wide Web Consortium is standardizing
how this will work.

• The context ID is inserted by the HTTP server
accepting the request and propagated by every
service as it fans out the request. This is
transparent to the requester.

• Context can be used to control behavior of a
service.

© Len Bass 2022 46

Examples of context
• Test version. Use context to affect behavior or

routing.
• Application. Google might want to know what

percentage of their network traffic might be due
to search, Gmail, etc

• Traffic prioritization. Give priority to certain
requests to maintain quality of service.

• Bottleneck determination. Where is the most
time being spent in a collection of transactions?

© Len Bass 2022 47

Site Reliability Engineer (SRE)

• An SRE is first responder when an alert
occurs.
• Their responsibility is to determine

immediate cause of problem
• Get system back into operation
• Determine underlying problem cause
• inform development team of cause

© Len Bass 2022 48

SRE skill set

• Overall view of how system fits into
infrastructure
• Individual components
• Interactions with infrastructure

• Good problem-solving skills
• Good communication skills
• SREs are software architects with a different

title.

© Len Bass 2022 49

Future – tool evolution

• Vendors will consolidate. Tools will get
merged.

• Tools will expand to cover more of the
DevOps processes

• Patch management software market
expected to double in next 2 years.

© Len Bass 2022 50

Future – multi-cloud

• The multi-cloud market is projected to grow to
~$30 billion by 2028.

• Multi-cloud improves reliability and avoids
vendor lock in.

• Has the cost of ensuring all systems,tools,
and IaCs run on both vendors.

© Len Bass 2022 51

Avoiding vendor lock in for
cloud providers

• Some provisioning tools are cloud provider
agnostic, others are cloud provider specific.

• The trade off is traditional. Agnostic tools can
be used on multiple vendors whereas specific
tools can take advantage of cloud vendor
specific features.

© Len Bass 2022 52

Avoiding vendor lock in for
tools

• It is possible to get locked in to tool vendors
as well as cloud providers

• Expect to see translation mechanisms from
one tool vendor’s language to another.

• Many popular DevOps tools are open source:
Docker, Kubernetes, Jenkins, Vault, Istio,
Ansible, Chef, Terraform

© Len Bass 2022 53

Future – domain specific

• Expect to see growth of domain specific
DevOps
• DevOps for AI. Separate pipeline for data

and software.
• DevOps for government. DevOps practices

and tools included in RFPs/contracts.
• DB DevOps. Management of database

code changes

© Len Bass 2022 54

Summary
• DevOps is a process improvement effort

concerned with deployment time and incident
handling time.

• Software architects must design for
• version skew
• Measurement
• Centralized credential management

• Chaos Engineering is a discipline of testing in
production

© Len Bass 2022 55

Summary

• Multi-cloud hosting will grow
• Domain specific DevOps will grow
• Tool vendors will consolidate
• Vendor lock in will become a bigger problem.

© Len Bass 2022 56

More Information

• “Deployment and
Operations for
Software Engineers” is
available from Amazon.

